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Abstract. The pair-connectedness function and the average cluster size are determined 
for two different three-dimensional fluid systems using the Percus-Yevick (PY) approxima- 
tion. The permeable-sphere model of Blum and Stell provides a one-parameter bridge 
from the ideal gas (perfectly penetrable spheres) to the PY hard-sphere fluid. Two of such 
particles are considered to be ‘bound’ when their cores overlap. The percolation transition 
is located as a function of the interpenetrabiiity of the particles, and is found to correspond 
to an average coordination number i = 4. Baxter’s adhesive-sphere model is also investi- 
gated in the PY approximation and it is found that at the percolation transition the average 
coordination number is 2. The boundary between percolating and non-percolating 
homogeneous thermodynamic states is determined. 

1. Introduction 

Percolation or connectivity concepts are a subject common to a variety of problems 
involving the determination of macroscopic properties which are strongly affected by 
the existence of an infinite cluster. Thus, percolation theory has been used in the 
study of conduction in disordered materials (Kirkpatrick 1973, 1979), of gelation 
(Coniglio et a1 1982) and of the structure of liquid water (Stanley and Texeira 1980). 
In addition to the percolation transition, the theory provides information on cluster 
statistics relevant to many physical systems. 

An effort has been made in recent years towards an understanding of the relation- 
ship between percolation transitions and thermal phase transitions, and in applying 
these ideas to other phenomena in disordered systems. These works are described in 
recent reviews (Stauffer 1979, Essam 1980). Most of such studies have been on lattice 
systems. The study of percolation in a continuum has received comparatively less 
attention. For example, series expansions (Haan and Zwanzig 1977) and Monte Carlo 
studies (Gawlinski and Stanley 1981, Vicsek and Kertesz 1981) have been reported 
for the latter case. Furthermore, almost all such studies are concerned with systems 
of non-interacting particles, where the concept of connectivity is equivalent to that 
of overlap. The percolation behaviour in these cases is independent of temperature. 

The present work is concerned with continuous percolation in systems of particles 
whose configuration obeys a Gibbsian distribution according to two different models 
for the interparticle potential. The first of these models is the system of permeable 
or partly penetrable spheres proposed by Stell and coworkers (Blum and Stell 1979, 
1980, Salacuse and Stell 1982). It consists of a one-parameter family of structures 
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which has as its two extremes (i) the ideal gas, i.e. a fluid of perfectly non-interacting 
particles, and (ii) the hard-sphere fluid in the Percus-Yevick (PY) approximation. The 
intermediate values of the parameter correspond to varying degrees of core inter- 
penetrability. The temperature of the fluid need not be defined explicitly, but the 
degree of penetrability of the spheres can be regarded as a dimensionless indication 
of its value. The second kind of system for which we investigate the percolation 
behaviour is the adhesive-sphere model of Baxter (1968a). It describes an assembly 
of particles with a spherical hard core plus an attractive interaction which is infinitely 
short-ranged. In addition to its density, an adhesive-sphere fluid is characterised by 
a reduced temperature T. Its inverse is interpreted as the interparticle adhesiveness. 
The limit T + cc corresponds to a system of hard spheres. 

2. Physical clusters and pair connectedness 

The study of the distribution of physical clusters in an equilibrium system of interacting 
particles requires an arbitrary separation of the Boltzmann factor into two parts (Hill 
1955) 

exp[-pu(r)] = e x p [ - p u + ( r ) ] + e x p [ - p u * ( r ) ]  (1) 

where u f ( r )  and u * ( r )  are the interaction potentials for bound and unbound pairs of 
particles, respectively. The corresponding Mayer f-functions are defined as 

f + ( r )  = exp[-pu + ( r ) l ,  f * ( r )  = exp[ -@U * ( r ) ]  - 1. V u ,  6 )  

The pair-connectedness function P ( r l ,  r2)  is defined so that p 2 P ( r l ,  r2)  drl  dr2 is the 
probability of simultaneously finding a particle in dr l  at r l  and another particle, of 
the same cluster, in dr2 at r2.  In an isotropic system P ( r l ,  r2)  = P ( r I 2 ) .  Coniglio et a1 
(1977a) derived the cluster expansion for P ( r )  by replacing every f-bond in the 
corresponding expansion for the pair-correlation function with the sum f ( r )  = 
f + ( r )  + f * ( r ) .  The pair-connectedness function P ( r )  can then be identified with the 
collection of diagrams having at least one unbroken path of f'-bonds connecting the 
root points 1 and 2. The graphs in P ( r )  can be divided into the nodal or bridge graphs 
b ' ( r )  and the direct or non-nodal graphs C + ( r ) .  An Ornstein-Zernike relation can 
be established between P ( r )  and C + ( r ) :  

P ( r )  = C ' ( r )  + p  C'(r')P(Jr -r' l)  dr'. (3) 5 
The PY approximation 

g ( r )  = exp[-pu (r) l [ l+ b ( r ) l ,  (4) 

where b ( r )  is the nodal part of the pair-correlation function g ( r ) ,  is one of the most 
convenient and widely used closures for the Ornstein-Zernike integral equation. It 
can also be suitably modified for the connectedness problem by the introduction of 
equation (2). The result is (Coniglio et af 1977a) 

( 5 )  

The system of equations (3) and ( 5 )  must be solved for both P ( r )  and C + ( r ) .  The 

P ( r )  = exp[-pu + ( r ) l g ( r )  expbu  ( r ) l +  exp[-pu *(r) l[ f ' (r)  - C + ( r ) l .  



Percolation of permeable and adhesive spheres 2601 

mean cluster size S can be computed from the analogue of the compressibility equation 

S = l + p  P ( r ) d r  I 
with the percolation threshold pp corresponding to the limit S + 03. 

3. The permeable-sphere system 

The permeable-sphere model was proposed by Blum and Stell (1979, 1980) as a 
generalisation of the hard-sphere model. The PY approximation is imposed outside 
the core 

c i r )  = 0 for r > d  (7) 

whereas the usual hard-core condition is modified to 

g i r )  = 1 - E  for r < d .  (8) 

The parameter E is a measure of the mutual impenetrability of the particles. Thus, 
E = 0 corresponds to the ideal gas, and E = 1 to the PY hard-sphere case. Stell and 
coworkers pointed out that this model enjoys a significant property: the solution to 
the Ornstein-Zernike equation for a number density p can be expressed directly in 
terms of the corresponding hard-sphere solution for the density ep, 

g ( r ; p , E ) = E g H S ( r ; E P ) + l - E .  ( 9 )  

The effective (density-dependent) interparticle potential equivalent to ( 7 )  and (8) can 
be computed in a straightforward manner as 

l--E 
u ( r )  = -kT In 

I - E [ I + C ~ ~ ( ~ ) ]  

where c H S ( r )  is the PY direct correlation function for the hard-sphere system (Salacuse 
and Stell 1982). 

The percolation transition of a permeable-sphere system will depend on the 
parameter E .  In this case the natural definition of a bound pair is that of particles 
with core overlap, so that in ( 1 )  

= 0,  r ) d ,  

exp[-@u*(r)] = 0 ,  r <d,  

= 1 ,  r >d.  

With this separation, ( 5 )  becomes 



2602 Y C Chiew and ED Glandt 

4. Percolation in the permeable-sphere model 

The short-range nature of C'(r) makes it appropriate to solve the Ornstein-Zernike 
equation (3) through the application of the method due to Baxter (1968b). It amounts 
to a transformation of the original integral equation into the following two relations, 
written here in the language of the pair-connectedness problem: 

rC'(r) = -q ' ( r )  +21rp q'(t)q(t  - r )  dt, O < r < d ,  lr 
lod rP(r) = -q'(r) + 27rp ( r  - t)P(lr - t1)q ( t )  dt, r >0, 

where q ( r )  has the property 

q(ri  = 0 f o r r < O a n d r > d .  

When (8) and (13) are introduced into (16) we obtain, for the range 0 < r < d, 

q ' ( r j  = cyr + p  
where a and p are constants given by 

d 

cy = -( 1 - E )  + (1 - ~ ) 2 7 r p  lo q ( t )  dt, 

p = -(1-~)27rp lo tq( t )  dt. 
d 

On integration of (18) and application 
are found to be 

(1 - &)[2?7(1 - E )  - 11 
[1+(1-4?712 ' 

c y =  

of the boundary condition of (17), cy and /3 

-&J (1 - E ) 2  

=[1+(1-&)77]2, 

while 

q(r)  = & ( r 2 - d 2 ) + p ( r - d )  (22) 
where we have defined 77 = 7rpd3/6. This quantity does not correspond to the volume 
fraction of the spheres, except in the hard-particle limit of E = 1. 

Following Baxter's method (1968b) we define the function d(k) by 
d 

d(k)  = 1 -21rp I eikrq(r) dr 
0 

which is related to the pair-connectedness function by 

1 +p&) = [l -pC+(k)]-* = [d(k)d(-k)]- '  ( 2 4 ~ ~  6 )  

where p ( k )  and C ' ( k )  are the Fourier transforms of P(r )  and C+(r ) ,  respectively. 
Thus, the mean cluster size S of (6) is 

s = 1 + p P ( O )  = [l -pC+(o)]- ' = [d(o,]-' (25a, b, c )  

and the result is 

S ( E ,  17) = [1+ r/(1 -&)]4/[2?7(1 - E )  - 112# 
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The percolation transition corresponds to the divergence in S : 

v p =  1/2(1-&). (27) 

Equation (27) is plotted in figure 1. In the limit of E = 0, the fully permeable or 
ideal gas case is recovered, and it is seen that the value of the percolation threshold 
is predicted to be qp = $. The mean cluster size diverges with the exponent yp = 2. 
Table 1 shows a comparison of these results with the previously reported Monte 
Carlo and series expansion figures. The poor agreement is undoubtedly due to the 
use of the PY approximation in the present calculations. However, the PY solution 
permits the easy computation of the pair-connectedness function by a numerical 
integration of (16). Such a function is represented in figure 2, for the ideal-gas case, 
for various values of the reduced number density p* = pd3. The corresponding particle 
volume fractions are simply given by 4 = 1 -exp(-.np*/6). As should be expected, 
P ( r )  is unity for r < d, is discontinuous at r = d and decreases monotonically for r > d. 

I I I 

i 

Figure 1. PY approximation to the percolation transition for permeable spheres. The 
parameter E is a measure of the mutual impenetrability of the particles. 

Table 1. Estimated critical percolation density and critical exponent yp for fully penetrable 
spheres. 

T p  = 77PPd3/6 yp, exponent for the mean cluster size 

Haan and Zwanzig (1977) 1.80*0.2 Domb (1972) 0.339 

Gayda and Ottavi (1974) 
Haan and Zwanzig (1977) 0.35*0.03 
Holcomb et a1 (1972) 0.293 
Kurkijarvi (1974) 
Present work 0.5 

Fremlin (1976) 0.388*0.013 Present work 2.0 
0.325 * 0.013 

0.347 i 0.01 1 

When the PY approximation is applied to hard spheres, it is unable to reproduce 
either the equilibrium fluid-solid transition or to evidence any irregularities associated 
with random-close packing phenomena. The connectivity behaviour in this limit is 
equally unphysical. The predicted percolation transition occurs at v p  + 00, while it 
should be expected that the actual value for a disordered system should coincide with 
the random packing figure of = 0.63. 
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Figure 2. Pair-connectedness function for the ideal-gas system. 

The pair-connectedness functions for several intermediate cases of limited permea- 
bility are displayed in figure 3 for a fixed number density p * = O . 8 .  The overall 
behaviour is similar to that of the ideal gas but with P( r )  = 1 --E inside the core. At 
this density the hard-sphere limit E + 1 is P( r )  = 0 for all r. 

The average coordination number of the particles is immediately computable as 
d 

2 = lo 47rr2pP(r) dr. (28) 

At the percolation transition this number is &=4. This result applies to all values 
of the degree of impenetrability parameter E .  

5. The adhesive-sphere system 

This is a model proposed by Baxter (1968a). The pair potential is defined by 

O < r < u ,  (29) 

in the limit U +. d. Thus, the Boltzmann factor develops a Dirac delta contribution at 
contact 

exp[-pu(r)] = (d/127)6(r  -d) ,  r Gd, (32) 

= 1  r >d. (33) 
Here T is a dimensionless indicator of the temperature; the exact correspondence can 
be regarded as arbitrary. Thus, the quantity 7-l is a measure of the stickiness of the 
particles, with r - ' +  0 corresponding to non-sticky hard spheres. 

Baxter (1968a) obtained analytic results for this model in the PY approximation. 
He found the radial distribution function within the core to be 

g(r)  = &AdS(r - d) ,  O < r s d .  (34) 



Percolation of permeable and adhesive spheres 2605 

r l d  

Figure 3. Pair-connectedness function for permeable spheres at a reduced density p* = 
pd' = 0.8. 

Unlike in the case of hard spheres, (34) yields a finite probability of finding pairs 
of particles in contact at r = d. In fact, the average coordination number is 

2 = 2A77. (35) 

As before, 77 = 7rpd3/6, but it can now be identified with the volume fraction of 
particles. The dimensionless parameter A is related to T and 77 by 

where only one of the roots is physically significant. Baxter (1968a) has shown that 
this system undergoes a first-order liquid-vapour transition. The coexistence curve 
was obtained by Watts et a1 (1971) using the energy-equation route to the equation 
of state. 

The physical-cluster distribution and percolation behaviour of an adhesive-sphere 
system will depend on the parameter T.  The natural definition of bound neighbours, 
as in ( l ) ,  is that of particles at contact, so that 

exp[-pu'(r)] = ( d / l 2 ~ ) S ( r  - d )  for all r, (37) 

exp[-pu*(r)] = 0 for O<r <d ,  (38) 

= 1  for r < d. (39) 

6. Percolation in the adhesive-sphere model 

Equations (13) and (14) are also applicable in this case. The same procedure as with 
penetrable spheres can be followed to yield the obvious result 

P( r )  = &Ad8 (r - d )  for O <  r s d. (40) 
Again, (16) can be integrated numerically to yield the full pair-connectedness function. 
Figure 4 displays the pair-correlation functions (upper curves) and pair-connectedness 
functions (lower curves) for three thermodynamic states. All six curves include a 
singular contribution given by (40). Also, figure 5 shows the pair-connectedness 
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15  I 

r i d  

Figure 4. Pair-correlation (upper three) and pair-connectedness (lower three) curves for 
the adhesive-sphere fluid. -: q = 0.1, T = 0.35 (A = 2.971); ------ : q = 0.29, T = 0.35 
( A  =3.35);  - - - :  q = O . l ,  ~ = 0 . 1 1  ( A  =8.745).  

I \ 5 - 4  ------___ 
4 5 

i i d  

Figure 5. Pair-connectedness function for  an adhesive-sphere system at T = 0.35. -: 
q =0.25 ( A  =3.249); - - - :  q ~ 0 . 2  (A =3.138);  ------: 7 =0.1 (A =2.971).  

functions for three systems at the same temperature, while figure 6 does the same for 
three systems of equal density. All the curves are discontinuous at r = 2d, as g ( r )  is, 
and their successively higher derivatives become discontinuous at successively higher 
multiples of d (Cummings et a1 1976). 

Following the same procedure as in 8 5 ,  the mean cluster size is found to be 

S = 1/( 1  AT)^ (41) 
so that the percolation transition corresponds to 

q = 1 / A  (42) 

~ = ( 1 9 q ’ - 2 ~ + 1 ) / 1 2 ( 1 - q ) ’ .  (43) 

which, when combined with (36), yields the locus of the percolation line on the 7-7 
plane 

Baxter (1968a) has shown that there is a region in the 7-7 plane which corresponds 
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Figure 6. Pair-connectedness function for an adhesive-sphere system at 7 =0.1. -: 
~ = 0 . 1 5  ( A  =6.186); - - - :  r = 0 . 2  ( A  =4.778); ------: ~=0.35 (A  =2.971). 

to unphysical values of A (see also Watts er a1 1971). It should be noted that the 
percolation line lies entirely outside this region. 

It is of great interest to examine the relation between percolation and thermal 
phase transitions for the same system (Coniglio eta1 1977a, b). Baxter (1968a) showed 
that the adhesive-sphere model exhibits a first-order liquid-gas transition, and used 
the compressibility equation to locate the critical point at 7, = 0.1213, T ,  = 0.0976. 
Watts et a1 (1971) improved upon this estimate by obtaining the coexistence curve, 
shown in figure 7. Their results for the critical point are 7, = 0.32, T~ = 0.1 185. The 

i Non-percolating 

I I 

06 
,i 

0 0 2  0 4  
il 

Figure 7. Coexistence and percolation lines for the adhesive-sphere model fluid. The 
coexistence line was obtained by Wafts era1 (1971) using the PY energy-equation approach. 
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PY coexistence and percolation lines do not meet at the critical point in figure 7, as 
would have been expected of a two-dimensional case (Coniglio et a1 1977b). Jointly, 
they divide the thermodynamic plane into percolating and non-percolating states. The 
significance of the continuation of the percolation line into the two-phase region is 
yet to be elucidated. 
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